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SUMMARY

To improve the numerical analysis of free surface convection and interface reconstruction, both ®rst- and second-
order algorithms are developed based on the volume-of-¯uid method. The methodology applied to the second-
order model is to de®ne the second-order linear curve having both face slopes as near horizontal as possible
while satisfying the cell's de®ned volume fraction.

The second-order method is compared with the FLAIR method and the ®rst-order method through simulation
of the convection for various sizes of circular liquid shapes and solitary waves. For small curvature of the free
surface, e.g. circles with large diameter, linear methods such as the FLAIR method and the ®rst-order method
show relatively good predictions. However, for large-curvature con®gurations, e.g. circles with relatively small
diameter or solitary waves, the linear approach shows large distortion of the free surface. In contrast, the second-
order model always shows powerful prediction capabilities of free surface convection. # 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

1.1. General concept of free surface tracking

A variety of physical hydrodynamic phenomena involve interfaces between phases as shown in

Figure 1(a) (where F and V denote a cell ®lled with ¯uid and a completely void cell respectively and

S denotes a surface cell partially ®lled with ¯uid and partially void). These interfaces can exhibit

dynamic behaviour and an exact mathematical description of the ¯uid interfaces is required to solve

the transport equations of motion in the ¯uid domain. However, the numerical description of free

surface ¯ow and interfaces is notoriously complicated owing to dif®culties associated with the

discrete representation of the interfaces. The locations of these interfaces are not known in advance

and must be determined as part of the solution of the transport equations.

There are several numerical methods for treating ¯uid problems with interfaces using the

Lagrangian approach, such as boundary integral techniques,1±3 ®nite element methods4±6 and
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boundary-®tted orthogonal co-ordinates.7±9 Through these techniques the dynamic behaviour of free

surfaces can be calculated prior to solving the momentum equation. However, it is dif®cult to handle

complex phenomena such as surface folding and merging with these techniques owing to the

requirement of discrete speci®cation of the moving points.

A numerical technique that has the potential for handling large surface deformations as well as

surface folding and merging is the volume-tracking method. This method uses a volumetric progress

variable, such as marker particles in the marker-and-cell (MAC) technique10±12 and the cell volume

fraction technique,13±16 for Lagrangian transport of the interfaces. The MAC method involves

Eulerian ¯ow ®eld calculations and Lagrangian liquid±particle movements. The velocity of a marker

is found by taking the average of the Eulerian velocities in its vicinity. One of the dif®culties in using

the MAC method is the possible creation of arti®cially high or low marker number densities in the

cells owing to the irregularity of the ¯ow ®eld.

The volume-of-¯uid (VOF) method can be applied to determine free surface curves by use of the

volume fraction of a calculational cell and=or its neighbouring cells. This method is not susceptible to

the problems which can be encountered when using the MAC method.

1.2. Review of VOF method

In earlier applications of the VOF method the donor±acceptor method of zeroth-order17,18 was used

for VOF advection calculation, where a surface cell was assumed to be of either horizontal or vertical

Figure 1. Typical example and reconstruction schemes for interfaces of free surface
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rectangular shape as shown in Figure 1(b). The decision on the orientation was made by studying the

neighbouring cells. Once the surface orientation was identi®ed, appropriate techniques could be used

for its advection.17,18 For instance, in the SLIC (simple line surface calculation) method of Noh and

Woodward16 the surface would be reconstructed for ¯ux calculation as either a vertical or horizontal

line in the x- or y-direction respectively. In the method of Hirt and Nichols13 the surface orientation

would also be considered to be either vertical or horizontal, but the calculation of the convective ¯ux

would be limited based on neighbouring volume fractions of the cell to prevent diffusion of the

volume fraction owing to the excessive amount of advection.

However, the simple shape of the donor±acceptor technique introduces inaccuracies associated

with the surface reconstruction and its advection in VOF convection. To improve the accuracy of free

surface convection, two alternative approaches to the simple line method have been developed by

Youngs19 and Ashgriz and Poo,20 where the interface is approximated by a sloped line in each cell

rather than a horizontal or vertical line.

There is no detailed description of the procedure of Youngs' approach reported in the open

literature for obtaining the slope of the surface cell and for calculating the convective ¯ux of free

surface ¯ow. However, based on a review, the slope can be inferred to be de®ned as the average value

of the slopes calculated at the cell centre as shown in Figure 1(c). In the FLAIR (¯ux line segment

model for advection and interface reconstruction) method suggested by Ashgriz and Poo,20 two kinds

of convection methods are applied based on the status of the donor and acceptor cells. If both the

adjacent cells are surface cells, the slope is calculated at the face located between the donor and

acceptor cells. If one of the cells is a ¯uid cell or a void cell, the slope is calculated at the centre of the

donor cell by use of the donor cell and its neighbouring cells as shown in Figure 1(d).

1.3. Necessity of a new model for free surface convection

In treating a free surface problem with wall boundary conditions, such as thin liquid layer ¯ow, the

major part of the velocity change usually occurs near the wall boundaries. To ensure accuracy of the

momentum equation solution by a numerical method, a ®ne mesh distribution is generally required

near the wall boundaries. However, a coarser mesh distribution may be allowed near the free surface,

since the velocity distribution is nearly ¯at around the free surface.

When the interfaces of two different materials consist of complicated shapes, the mesh size around

the interfaces must be ®ne enough to reconstruct the free surface correctly. This often leads to a ®ne

mesh distribution over the whole computational domain. While this mesh distribution may bring

good results for momentum and free surface convection calculation, an excessive calculation time

may be required. In order to reduce the calculation time without impairing the calculational accuracy

with a coarser mesh distribution, there is a need to develop a free convection model that can give

improved predictions over conventional models.

Since there is no detailed information in the literature to describe Youngs' approach, the most

accurate free surface convection model among the published ones seems to be the FLAIR method.

The basic concept adopted in the FLAIR method is to assume that the interface can be represented as

a straight line by segmenting the whole interface into small pieces. This approach could be

appropriate when the system is segmented into small pieces. However, when the mesh distribution is

not ®ne enough to be able to represent the interface with a straight line, the FLAIR method can

construct inappropriate shapes for some cases as shown in Figure 2. Such shapes can often appear

around the corners of the free surface even though the interface is segmented into small pieces. These

inappropriate shapes can adversely affect the accuracy of the free surface convection model owing to

the strong dependence of free surface convection on the slope at the convection face of the surface

cell.
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Although there is no general description of the accuracy of the free surface convection model, it is

known that the accuracy of convection calculation for free surfaces depends not only on the slope of

the convection face of the surface cell but also on the slope of the other face where the interfaces

meet. To better represent the surface cells, a higher-order equation is needed to model the interfaces.

This higher-order approximation can represent the interfaces more accurately but can require more

computer time for convective ¯ux calculation and a complicated solution procedure.

Despite the merits of high-order equations, if a higher-than-second-order approximation is used for

modelling the free surface interfaces, the integration of the distribution function is higher than third-

order, which is hard to solve analytically. The third-order integration equation generated from the

second-order model can, however, be solved by analytical solution procedures.21 Therefore a second-

order approximation technique will be developed in this study.

2. SECOND-ORDER MODEL

The methodology applied for the second-order model is to ®nd a second-order linear curve to ®t the

volume fraction distribution in a computational cell. The procedure for constructing the second-order

model for the interfaces and calculating the convective ¯ux is as follows.

Step 1. By inspecting the direction of a face velocity, de®ne the cell block with the donor cell and

its neighbouring cells as shown in Figure 3.

Step 2. Calculate the volume fraction slopes mR;mL;mB and mT at each cell face and determine

the average slopes �d f =dX �AVG and �d f =dY �AVG and the slope change rates d2f =dX 2 and

d2f =dY 2 in the X- and Y-direction respectively as described in Section 2.1.

Step 3. Rearrange the surface cell such that the nearly horizontal interfaces of the free surface lie

along the x-direction of the model computational domain and reset the volume fraction

such that the second-order curve has a convex shape in the positive y-direction of the

model computational domain as described in Section 2.2.

Step 4. De®ne a normalized second-order linear equation and identify the base cases of the

second-order model as described in Section 2.3.

Step 5. Identify the direction of convection and calculate the convective ¯ux as described in

Section 2.4.

2.1. Slope calculation

For calculating the slope at the face of a surface cell by use of neighbouring cells, it is assumed that

the interface of the free surface can be represented by a single-valued function f �X � or f �Y � in the X-

Figure 2. Typical examples of free surface reconstruction by FLAIR method

82 S. O. KIM AND H. C. NO

INT. J. NUMER. METH. FLUIDS, VOL. 26: 79±100 (1998) # 1998 John Wiley & Sons, Ltd.



or Y-direction of the real computational domain. If the surface is represented as f �X �, f �X � can be

approximated as the sum of the volume fractions of cells j ÿ 1 to j � 1 for each cell column of Figure

3:

fiÿ1 �

Pj�1

k�jÿ1

�dykFiÿ1;k�

H
; �1�

fi �

Pj�1

k�jÿ1

�dykFi;k�

H
; �2�

fi�1 �

Pj�1

k�jÿ1

�dykFi�1;k�

H
; �3�

where H �Pi�1
k�jÿ1 dyk and f � 0 are taken as the bottom edge of the �j ÿ 1� row of cells. The slope

of each face is determined by drawing a straight line � f � mx� n� below which both liquid and void

volume fractions are located. If the larger volume fraction between the two columns is assigned as FM

and the smaller one as Fm and if the cell width is represented as xL�� L=H� for FM and xR�� R=H�
for Fm as shown in Figure 4, then the boundary slope m is calculated from equation (4)±(7) by

categorizing the cases based on the values of fM; fm; xL and xR as shown in Figure 2:

Case 1

m � 2

x2
L

fÿ�2xRFm � xLFM� � 2
p�xRFm�xRFm � xLFM��g �4�

if Fm 5
xRFM

2xR � xL

and xL�1ÿ FM� �
p�Fm�1ÿ FM�xLxR�5

xL

2
;

Figure 3. De®nition of cell block
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Case 2

m � 2�Fm ÿ FM�
xR � xL

�5�

if Fm 5
xRFM

2xR � xL

and Fm 5
FM�xR � 2xL� ÿ �xR � xL�

xL

;

Case 3

m � ÿ 1

2fFmxR �
p�Fm�1ÿ FM�xRxL�g � 2f�1ÿ FM�xL �

p�Fm�1ÿ FM�xRxL�g
�6�

if xL�1ÿ FM� �
p�Fm�1ÿ FM�xLxR�4

xL

2
and xRfm �

p�Fm�1ÿ FM�xRxL�4
xR

2
;

Case 4

m � ÿ2

x2
R

��2xL�1ÿ FM� � xR�1ÿ Fm� � 2
pfxL�1ÿ FM��xL�1ÿ FM� � xR�1ÿ Fm��g�� �7�

if Fm 4
FM�xR � 2xL� ÿ �xR � xL�

xL

and xRFm �
p�Fm�1ÿ FM�xRxL�5

xR

2
:

From the slopes of boundary faces the average slope and the slope change rate are calculated by

df

dX

� �
AVG

� mRdxL � mldx
R

dxR � dxL

; �8�

d2f

dX 2
� mR ÿ mL

dxR � dxL

; �9�

Figure 4. Calculation of volume fraction slope between two cell columns
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where

dxR �
dxi � dxi�1

2H
; dxL �

dxiÿ1 � dxi

2H
:

A similar calculation can be made for df =dY , i.e.

fjÿ1 �
Pi�1

k�iÿ1

�dxkFk; jÿ1�; �10�

fj �
Pi�1

k�iÿ1

�dxkFk; j�; �11�

fj�1 �
Pi�1

k�iÿ1

�dxkFk; j�1�; �12�

df

dY

� �
AVG

� mTdyB � mBdyT

dyT � dyB

; �13�

d2f

dY 2
� mT ÿ mB

dyT � dyB

; �14�

dyT �
dyj � dyj�1

2H
; dyB �

dyjÿ1 � dyj

2H
; �15�

where H �Pi�1
k�iÿ1 dxk and f � 0 are taken as the bottom edge of the � j ÿ 1�th row of cells (Figure

2a).

2.2. Rearrangement of surface cell block

When an arbitrary surface cell block is de®ned from a typical interface as shown in Figure 3, there

are a variety of free surface shapes around the donor cell as shown in Figure 5. To reduce the number

of cases, neighbouring cells must be rearranged. First, the cell block is rotated such that the nearly

horizontal orientation of the interface lies along the x-direction of the model computational domain,

where the horizontal orientation is de®ned as the direction with the smaller absolute magnitude of

average slope. By this manipulation, Cases 5±8 and 13±16 in Figure 5 can be eliminated. If the liquid

phase lies above the convex line of the second-order curve, the volume fraction is rede®ned for void

instead of liquid. With this rede®nition of volume fraction, Cases 9±12 are identical to Cases 1±4 in

Figure 5. Finally, by examining the average slope of Cases 1±4 in the x- and y-direction, the volume

fractions of the left and right columns or those of the top and bottom rows are interchanged so that the

sum of volume fractions of the left column and that of the bottom row have a larger value than the

others. Using this procedure of neighbouring cell rearrangement and volume fraction resetting all the

cases in Figure 5 can be represented by a single case, i.e. Case 1. Also, all the slopes and volume

fractions calculated in Section 2.1 are rearranged to have the shape of Case 1 in Figure 5. The detailed

data are given in Table I.
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2.3. Model case identi®cation

After rearrangement of the boundary cell block as described in Section 2.2, a second-order linear

equation is de®ned to represent the volume fraction distribution in a surface cell normalized by the

surface cell height H and width W:

y � ax2 � bx� c: �16�
The constants a and b are obtained by differentiating equation (16) and calculating the slopes of the

left and right faces of a surface cell via the equations

a � mr ÿ ml

2
; b � ml; �17�

mr �
W

H
m0R; ml �

W

H
m0L �18�

where m0R and m0L are the slopes de®ned in Table I.

When ®tting the interfaces of a surface cell by the second-order curve, eight possible shapes may

exist as shown in Figure 6. However, Cases f±h can be eliminated by restricting the maximum

difference in volume fraction distribution within a cell to less than the cell height, because Cases f±h

rarely appear in volume fraction calculations of the rearranged interface. Furthermore, higher-than-

fourth-order algebraic equations have to be solved to get the constant c of equation (16) for Cases f±h.

The maximum cell difference within a surface cell can be de®ned by two types. If the slopes mr

and ml have the same sign, the maximum difference is the distance between the intersecting points fl

Figure 5. Possible volume fraction distributions in cell block
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and fr of the left and right faces of the cell as de®ned in Figure 7. However, if the slopes mr and ml

have different signs, the maximum difference is the distance from the polar value fp to the

intersection point fr of the right face. If the maximum difference exceeds the cell height, the cell slope

is corrected so that the difference will be the same as the cell height as follows:

mr � ÿ
2H

W

m0R
m0R � m0L

and ml �
m0L
m0R

mr if m0Lm0R 5 0; �19�

mr � ÿ
2H

W

m0L ÿ m0R
m0R

and ml �
m0L
m0R

mr if m0Lm0R 4 0: �20�

Table I. Information on second-order model: slopes, VOF de®nitions and convection directions (x and y, co-
ordinates of model; X and Y, co-ordinates of calculational domain; mx � �df =dX �AVG; mY � �df =dY �AVG;

a � �d2f =dX 2� if jmX j > jmY j; a � �d2f =dY 2� if jmX j < jmY j�

jmX j ÿ jmY j a mY mX m0L m0R x y
De®nition
of VOF

Case number
of Figure 5

<0 <0 <0 <0 �mL �mR X Y Fluid 1
<0 <0 <0 >0 ÿmR ÿmL ÿX Y Fluid 2
<0 <0 >0 <0 �mL �mR X ÿY Fluid 3
<0 <0 >0 >0 ÿmR ÿmL ÿX ÿY Fluid 4
>0 <0 >0 <0 ÿmT ÿmB ÿY X Fluid 5
>0 <0 >0 >0 ÿmT ÿmB ÿY ÿX Fluid 6
>0 <0 <0 <0 �mB �mT Y X Fluid 7
>0 <0 <0 >0 �mB �mT Y ÿX Fluid 8
<0 >0 >0 >0 ÿmL ÿmR X Y Void 9
<0 >0 >0 <0 �mR ÿmL ÿX Y Void 10
<0 >0 <0 >0 ÿmL ÿmR X ÿY Void 11
<0 >0 <0 <0 �mR ÿmL ÿX ÿY Void 12
>0 >0 <0 >0 �mT �mB ÿY X Void 13
>0 >0 <0 <0 �mT �mB ÿY ÿX Void 14
>0 >0 >0 >0 ÿmB ÿmT Y X Void 15
>0 >0 >0 <0 ÿmB ÿmT Y ÿX Void 16

Figure 6. Possible interface shapes in approximating free surface by second-order model
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After adjusting the boundary slope, the second-order model is categorized into ®ve cases (Cases a±e).

To calculate the constant of equation (16) and the convective ¯ux, every case must be examined.

Each case is examined by comparing the real volume fraction F with the area which is calculated by

setting one of the intersection points fl and fr of the left and right faces or the peak value fp located

within the surface cell range to zero or the cell height of Figure 7. For instance, to differentiate Case a

from Cases b and d, two criteria must be established. The criterion to differentiate Case a from Case b

is ®rst established by setting the intersection points fr of the right face to zero and integrating equation

(16) from x � 0 to 1:

Case a

if F 4 ÿ 2mr � ml

6
; �21�

Case b

if F 5 ÿ 2mr � ml

6
: �22�

The second criterion is established to differentiate Case a from Case d. As the slope of the left face is

less than that of the right face, the polar point xp is located nearer the left face. Therefore the criterion

is established as follows by setting the intersection point fl of the left face to zero as shown in Figure

7:

Case a

if F 5
m3

l

6�mr ÿ ml�3
; �23�

Case b

if F 4
m3

l

6�mr ÿ ml�3
: �24�

By similar evaluations, all the cases can be examined via the following criteria:

Figure 7. Boundaries for Cases a, b and d of second-order model

88 S. O. KIM AND H. C. NO

INT. J. NUMER. METH. FLUIDS, VOL. 26: 79±100 (1998) # 1998 John Wiley & Sons, Ltd.



Case a

if F 5
m3

l

�ml ÿ mr�3
and F 4 ÿ 2mr � ml

6
; �25�

Case b

if F 5 ÿ 2mr � ml

6
and F 4 1ÿ m3

l ÿ m3
r

�ml ÿ mr�2
; �26�

Case c

if F 5 1� mr � 2ml

6
for mlmr 5 0; �27�

if F 5 1� mr ÿ 2ml

6

mr ÿ ml

mr � ml

� �2

for mrml 4 0; �28�

Case d

if F 4
m3

l

6�mr ÿ ml�3
; �29�

Case e

if F 5 1ÿ m3
l ÿ m3

r

�ml ÿ mr�2
and F 4 1� mr ÿ 2ml

6

mr ÿ ml

mr � ml

� �2

: �30�

2.4. Calculation of convective ¯ux

For calculating the convective ¯ux, the direction of convection in the calculational model must be

identi®ed, since the cell block is rearranged to reduce the number of cases. The details of the

coordinates of x and y of the rearranged model relative to the directions X and Y of the real

computational domain are given in Table I.

To calculate the convective ¯ux, the constant c of equation (16) must be determined. For Cases b

and d the constant c is determined explicitly as follows:

Case b

c � F ÿ 2mr � ml

6
; �31�

Case d

c � b2

4a
ÿ a

4
ÿ 6F

a

� �2=3

: �32�

However, for Cases a, c and e the constant c must be evaluated from the third-order algebraic

equation which comes from integrating the second-order linear equation within the surface cell. As an

example, the constant c of Case a will be calculated by equating the volume fraction value to that
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integrated from the left face of the cell to the bottom point xb of Figure 8. Proper manipulation yields

the third-order algebraic equation

x3
b �

3b

4a
x2

b �
3F

2a
� 0: �33�

After establishing the third-order algebraic equation, an appropriate solution is obtained by Cardano's

solution procedure.21 Letting Q � ÿ�b=4a�2, R � ÿ3F=4aÿ �b=4a�3 and D � Q3 � D2,

if D5 0; then xb �
p�R�pD� � p�RÿpD�: �34�

if D < 0; then x1 �
b

a
cos

y
3

� �
; x2 �

b

a
cos

y
3
� 2p

3

� �
; x3 �

b

a
cos

y
3
� 4p

3

� �
; �35�

where y � cosÿ1�D2=Q3� and xb is the solution which exists within 0±1 from x1; x2 and x3.

For Cases c and e the constant c can be obtained by a similar procedure to that for Case a.

The convective ¯ux calculation in the second-order model is accomplished via integration of the

second-order equation from the cell face to the distance de®ned by the local velocity of the cell face

over time. For example, for Case a the ¯uid ¯ux in the positive x-direction is

dfx� � 0 if xp 5 xb; �36�

dfx� �
�xb

xp

f dx if xp 4 xb; �37�

where xp � 1ÿ �u� dt�=W . The ¯uid ¯ux in the negative x-direction is

dfxÿ �
�xm

0

f dx if xm 4 xb; �38�

dfxÿ � F if xm 5 xb; �39�

Figure 8. Calculation of second-order convective ¯ux in each direction
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where xm � �uÿ dt�=W . The ¯uid ¯ux in the positive y-direction is

dfy� � 0 if yp 5 fp; �40�

dfy� �
�x2

x1

� f ÿ yp� dx if fl 4 yp 4 fp; �41�

dfy� �
�x2

0

� f ÿ yp� dx if yp 4 fp; �42�

where yp � 1�v� dt�=H and x1 and x2 are the points where the second-order curve intersects the line

f � yp. The ¯uid ¯ux in the negative y-direction is

dfyÿ � F if ym 5 fp; �43�

dfyÿ �
�x2

x1

� f ÿ ym� dx if fl 4 ym 4 fp; �44�

dfyÿ �
�x2

0

� f ÿ ym� dx if ym 4 fl; �45�

where ym � �vÿ dt�=H and x1 and x2 are the points where the second-order curve intersects the line

f � ym.

3. FIRST-ORDER MODEL

As discussed in Section 1, there are two methods in the literature for calculating the convection of a

free surface by use of the sloped line approach. The FLAIR method uses the face slope of the surface

cell. Alternatively, the ®rst-order approach (using the average slope of the surface cell) was

introduced by Youngs, but the detailed methodology is not described. Thus a procedure is developed

herein for the ®rst-order method which is based on the average slope at the centre of the surface cell.

The basic concept of the ®rst-order method is very similar to that of the second-order method in

that the average slope of the horizontal orientation of a free surface is utilized for constructing the

®rst-order linear curve. After rearranging the surface cell and neighbouring cells in the cell block and

calculating the average slope in the same way as in the second-order method, four cases of the surface

cell model are established as shown in Figure 9. To model the volume fraction in the surface cell by

the ®rst-order linear curve (equation (46)), the constant n is determined by setting the volume fraction

value equal to the integrated value of the ®rst-order curve for each case:

f � mx� n; �46�
where m is the average slope of the cell face;

Case a

if F 4
ÿm

2
and F 4

1

2m
; then n � p�ÿ2mF�; �47�

Case b

if F 4
m

2
� 1 and F 5 ÿ m

2
; then n � F ÿ m

2
; �48�
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Case c

if F 5
m

2
� 1 and F 5 1� 1

2m
; then n � 1ÿ mÿp�ÿ2m�1ÿ F��; �49�

Case d

if F 4 1� 1

2m
and F 5 ÿ 1

2m
; then n � 1

2
ÿ mF: �50�

After the constants m and n have been ®xed, the convective ¯ux for each case can be determined by

integration of the ®rst-order linear curve from the surface cell face to the distance determined from

the local velocity for each direction over time (Figure 10). As an example, the ¯uid ¯ux in the

positive x-direction for Case c is

dfx� �
�1

xp

f dx if xp 5 xt; �51�

dfx� � xt ÿ xp �
�1

xt

f dx if xp 4 xt; �52�

where xp � 1ÿ �u�dt�=W . The ¯uid ¯ux in the negative x-direction is

dfxÿ � xm if xm 4 xt; �53�

dfxÿ � xm ÿ xt �
�xt

0

f dx if xm 5 xt; �54�

Figure 9. Possible cases of ®rst-order method
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where xm � �uÿ dt�=W . The ¯uid ¯ux in the positive y-direction is

dfy� �
�1

xs

� f ÿ yp� dx if yp 5 fr; �55�

dfy� �
�xs

0

� f ÿ yp� dx if yp 4 fr; �56�

where yp � 1ÿ �v� dt�=H and xs is the point where the ®rst-order curve intersects the line yp. The

¯uid ¯ux in the negative y-direction is

dfyÿ � ym if ym 5 fr; �57�

dfyÿ � xsym �
�1

xs

f dx if ym 4 fr; �58�

where ym � �vÿ dt�=H and xs is the point where the ®rst-order curve intersects the line ym.

4. RESULTS AND DISCUSSION

4.1. Case-by-case model comparison

To assess the capability for reconstruction of free surface shapes, four cases are compared as

shown in Figure 11. The slopes of the left and right faces in Cases 1 and 2 have the same sign and the

slopes of the left and right faces in Cases 3 and 4 have different signs. Comparing the capability for

reconstruction of the free surface shape between the ®rst-order method and the FLAIR method, the

®rst-order method more accurately represents the analytic second-order curve for left and right

convection than the FLAIR method for Cases 1 and 3. For Cases 2 and 4 the FLAIR method provides

a better representation of the second-order curve in the right-hand direction but the ®rst-order method

®ts the second-order curve in the left-hand direction. It is concluded that if the average slopes of the

two adjacent cells have the same sign and the magnitudes are almost the same, the FLAIR method

Figure 10. Schematic drawing of convective ¯ux calculation of ®rst-order method
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more closely reconstructs the original shape. However, if the average slopes of the two adjacent cells

have different signs and the difference in magnitudes is large, the FLAIR method yields poor results.

Additionally, if the slope change rate is relatively small, the centre-averaged ®rst-order method

closely reconstructs the original shape. However, if the slope change rate is relatively large, the ®rst-

order approach also yields poor results. Therefore, to reproduce accurate representations of the

original shape by the sloped line method, either of the methods should be applied only after verifying

the slope change rate and the average slopes of two adjacent cells.

For cases 1±4 as shown in Figure 11, the second-order approach used in this study accurately

reproduces the second-order analytic curve in all cases. The second-order approach shows accurate

curve-®tting capability for the case of multiple connected boundary cells with large curvature.

4.2. Convection capability of a circle

Both models developed in this study are tested and compared with the FLAIR method for the

convection of a circular geometry. Here the FLAIR method is implemented in two different

approaches. First, it is done without special correction for the diffusion of volume fraction in the

procedure of free surface convection in exactly the same way as in the ®rst- and second-order

methods. Second, the convection calculations of the free surface are done by the programme supplied

by the original authors of the FLAIR method.20 There are large amounts of correction logic to prevent

the diffusion of volume fraction in that programme. A uniform velocity ®eld is assigned for the entire

calculational region in the right and upward direction. The velocities in the x- and y-direction are

assigned as one-quarter of the minimum mesh size, which is unit length in this study. Each circular

region is convected in this velocity for 100 time steps until the circle has moved completely out of its

original position. The calculational results are reviewed for three types of numerical error. The ®rst is

the maximum cell convection error which can be an indication of local shape deformation. The

second is the root of the square sum of every cell error for an indication of overall shape deformation.

The ®nal error is the total volume change to measure the conservation of volume fraction. The cell

convection error is de®ned as the cell volume fraction difference divided by the total circle area,

where the cell volume fraction difference means the value of the original analytic input data minus

the value of the cell volume fraction after 100 time steps of convection for each cell.

The maximum cell errors for each convection method are shown in Figure 12. The ®rst- and

second-order approaches show a continuous decrease. However, both FLAIR method applications

Figure 11. Shapes of reconstruced interface of free surface with large curvature by use of various free surface convection
models. Ð, analytic input data; u , FLAIR method for convection in right-hand direction; �, FLAIR method for convection

in left-hand direction; , , ®rst-order method; m , second-order method
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show slight oscillations with the number of cells in the diameter of the circular geometry. The

oscillation comes from the convection method of the FLAIR method. The ¯air method uses one of

two convection methods according to the volume fraction status of donor and acceptor cells. If one of

the volume fractions of two cells is full or void, the centre-averaged sloped line method (which is

almost identical to the ®rst-order approach described in this study except for the techniques of slope

calculation) is used. If both volume fractions are not full or empty, the boundary sloped line

techniques are used.

For the error magnitude the second-order method shows less error than the other methods at the

same cell number of circle diameter. The results obtained from the FLAIR method both with and

Figure 12. Maximum cell error versus circle diameter after 100 time steps of convection

Figure 13. Root of square sum error versus circle diameter after 100 time steps of convection
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without correction logic show almost the same degree of accuracy and are better than the results of

the ®rst-order method.

When comparing the error slopes in the semilogarithmic plots of errors, it is known that the

second-order method solutions converge more rapidly than those of the methods such as the ®rst-

order and the FLAIR method. It may be reasoned that a circle can be represented exactly by the

segments of a second-order curve as the circle diameter increases, but a circle cannot be represented

Figure 14. Reconstruction of circles after 100 time steps of convection by each free convection model
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exactly by the segments of a linear curve even if the diameter of the circle increases compared with

the cell size.

The root of the square sum error for each technique has a similar tendency to the maximum cell

error. Almost the same error magnitudes result as shown in Figures 12 and 13. This means that most

cell convection errors are very small except for the cells that have the dominant error.

Considering both the maximum cell error and root of square sum error results the second-order

model shows an equivalent error magnitude as compared with the ®rst-order approaches with almost

half the number of cells.

Figure 15. Reconstruction of solitary waves after 100 time steps of convection by each free surface convection model
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To show the convection capability of each technique, various sizes of concentric circles are drawn

with the analytic circles in Figure 14. This represents the volume fraction distribution after 100 time

steps of convection.

The shapes of the free surface convected by the ®rst-order approach show the most distortion. The

shape of the FLAIR method almost coincides with the analytic circle at large diameter, but at small

diameter the shape is seriously distorted by volume fraction diffusion. The shape of the second-order

method is minimally distorted from the original for all circle diameters.

When not using correction techniques, the total volume change of each method remains within the

order of 1�061076 which corresponds to machine zero in the numerical analysis. However, the

FLAIR method with correction logic shows various amounts of volume change ranging from the

order of 1�061073 for large diameters to the order of 1�0 for small diameters.

Therefore the total volume changes are not affected by the modelling of the free surface but are

in¯uenced instead by the convection method. Thus it is concluded that the total volume change

cannot be used as an indication of the accuracy of a free surface model.

4.3. Convection capability of a solitary wave

To compare the performance of the convection methods for a geometry with a sharp corner,

solitary wave convection is examined which is represented in the form of y � h sec h2�kx� � y0. As a

sample case the wave number k is assumed as 4�0=h and the wave height h is varied from 4�0 to 16�0
times the length of one cell. The solitary wave is convected in the right-hand direction for 100 time

steps with uniform velocity only in the x-direction as shown in Figure 15.

After 100 time steps of convection the FLAIR model shows the worst results among the three

approaches for the maximum cell error and the root of square sum error (Figures 16 and 17). It may

be reasoned that the boundary sloped line approach associated with the FLAIR method suffers from

volume fraction diffusion at the initial time stage around the crest of the wave. The diffused volume

fraction forces the FLAIR method to use the boundary sloped line approach for the convection of the

rear face of the solitary wave, which accelerates the distortion of the volume fraction. Both the ®rst-

and second-order methods of this study show much better results than the FLAIR method. In

Figure 16. Maximum cell error versus solitary wave height after 100 time steps of convections
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particular, the second-order model shows less error than the FLAIR method by an order of

magnitude.

Based on a review of Figures 16 and 17, it is concluded that for a problem with large curvature of

the free surface interface the second-order method can reduce the number of meshes by half relative

to the ®rst-order method. Compared with the FLAIR method, the second-order method reduces the

mesh number by a factor of two to three. For all the methods evaluated, the volume changes remain

almost within the machine-zero ranges.

However, whereas the semilogarithmic plots of errors in the circle problem versus mesh resolution

indicate that the errors in the second-order method solution converge to zero at a more rapid rate than

the errors in the ®rst-order method, Figure 16 shows that the slopes of the error curves for both ®rst-

and second-order methods are nearly the same.

It is believed that the sharp edge still exists near the wave crest even if the number of cells in the

solitary wave height increases within this calculational range.

Since the second-order curve is constructed by the combination of a de®ned volume fraction and

two face slopes, the accuracy of the free surface reconstruction by the second-order method depends

critically on the accuracy of the slopes. Therefore, if there is a rapid variation in volume fraction

distribution, such as the crest of a wave existing within a cell, the ®rst-order slope calculation method

may be inappropriate. From the above results it is believed that the slopes of the error curves for both

®rst- and second-order methods are nearly the same through the absolute errors have different values.

5. CONCLUSIONS

A new technique for the interface transport and reconstruction of a free surface has been developed

for numerical models of the volume fraction method. The basic features of this technique are to

represent the free surface and calculate the convective ¯ux by utilization of a set of second-order

linear curves. This technique was tested for various sizes of circles and solitary waves and a shaft

keyhole advected with uniform velocity in the ¯ow domain. For small curvature of the free surface,

such as a circle with large diameter, the ®rst-order approaches showed relatively close predictions to

Figure 17. Root of square sum error versus solitary wave height after 100 time steps of convection
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those from the second-order method. For a large-curvature geometry, such as a circle with a relatively

small diameter compared with the cell size or a solitary wave, the ®rst-order approaches showed

appreciable distortion of the shape and diffusion of the free surface. However, the second-order

model consistently demonstrated accurate prediction capabilities of free surface convection even with

a smaller number of cells.

It is also concluded that the total volume change cannot be used as an indicator of the accuracy of a

free surface convection model, but the maximum cell convection error and the root of the square sum

of every cell error should be used to measure the shape deformations.

In conclusion, it is recommended that for the reconstruction and convection of a free surface

geometry with large curvature the second-order model should be used to reduce the computation time

and to get better accuracy.
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